
Soft Comput (2014) 18:2209–2225
DOI 10.1007/s00500-013-1195-3

METHODOLOGIES AND APPLICATION

Enhancing differential evolution with role assignment scheme

Xinyu Zhou · Zhijian Wu · Hui Wang ·
Shahryar Rahnamayan

Published online: 6 December 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract As one of the most popular evolutionary algo-
rithms, differential evolution (DE) has been used for solving
a wide range of real-world problems. The performance of
DE highly depends on the chosen mutation strategy and con-
trol parameter settings. Although the conventional trial-and-
error procedure can be used to elaborately select the proper
strategy and to tune the parameter values, this procedure is
often very time-consuming and is not suitable for practition-
ers without a priori experience. To tackle this problem, DE
with a novel role assignment (RA) scheme is proposed in this
paper. In the RA scheme, both the fitness information and
positional information of individuals are utilized to dynam-
ically divide the population into several groups. Each group
is considered as a role, which has its own mutation strategy
and parameter settings and is expected to play a different
role in the evolution process. To verify the performance of
our approach, experiments are conducted on 23 well-known
benchmark functions. Results show that our approach is bet-

Communicated by Z. Zhu.

X. Zhou (B) · Z. Wu
State Key Lab of Software Engineering, School of Computer,
Wuhan University, Wuhan 430072, China
e-mail: xyzhou@whu.edu.cn

Z. Wu
e-mail: zhijianwu@whu.edu.cn

H. Wang
School of Information Engineering, Nanchang Institute
of Technology, Nanchang 330099, China
e-mail: huiwang@whu.edu.cn

S. Rahnamayan
Department of Electrical, Computer and Software Engineering,
University of Ontario Institute of Technology (OUIT),
2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada
e-mail: shahryar.rahnamayan@uoit.ca

ter than, or at least comparable to, several state-of-the-art DE
variants.

Keywords Differential evolution · Mutation strategy ·
Control parameter settings · Role assignment scheme

1 Introduction

Differential evolution (DE), proposed by Storn and Price
in 1995 (Storn and Price 1997; Price et al. 2005), is one
of the most powerful evolutionary algorithms (EAs), which
has been successfully applied to a wide variety of practi-
cal cases, such as engineering optimal design, digital filter
design, image processing, and data mining (Maulik and Saha
2010; Das et al. 2008). Similar to other EAs, DE employs
three evolutionary operations: mutation, crossover and selec-
tion, to evolve its population toward the global optimum. For
mutation and crossover operations, the performance of DE is
sensitive to mutation strategy and the associated control para-
meters, such as the scaling factor F and crossover rate CR.
In fact, different kinds of optimization problems generally
require different mutation strategies and parameter values
to maximize the performance of DE. Although the conven-
tional trial-and-error procedure can be used to elaborately
select a proper mutation strategy and to tune parameter val-
ues, this procedure is often very time-consuming and is not
suitable for practitioners without a priori experience. Hence,
how to dynamically select a mutation strategy and set the
control parameters for DE has become a challenging research
topic.

In the past decade, a number of approaches for dynami-
cally selecting mutation strategies and/or setting the control
parameters have been proposed to enhance the robustness of
DE (Liu and Lampinen 2005; Brest et al. 2006; Qin et al.

123

2210 X. Zhou et al.

2009; Mallipeddi et al. 2011; Ghosh et al. 2011; Wang et
al. 2011b). Most of these approaches can be considered as
adaptive or self-adaptive schemes (Eiben et al. 1999; Das and
Suganthan 2010; Neri and Tirronen 2010), which have shown
faster and more reliable convergence performance than the
classic DE. A common characteristic among these meth-
ods is that the previous experiences of generating promising
candidate solutions in term of fitness values, as the feed-
back from the evolutionary search, are utilized to select the
most suitable mutation strategy and/or parameter settings to
guide the search. Inspired by these techniques, the fitness
information of the population is utilized to assign muta-
tion strategies with distinct parameter settings to different
individuals in our approach. Moreover, during the evolution
in the DE, different individuals of the population usually
move through different regions of search space on the land-
scape. For these individuals, the performance of their asso-
ciated mutation strategies and parameter settings is influ-
enced by the characteristics of the regions being explored
by them (Gong et al. 2011b). Therefore, the positional infor-
mation of individuals in the search landscape is utilized in
our approach as well as the fitness information. By simul-
taneously considering the fitness information and positional
information of the population, we propose a role assignment
(RA) scheme for DE, in which each individual of the popu-
lation is assigned with a role. Each role has its own mutation
strategy and parameter settings, which aims to play a differ-
ent role in the evolution by exhibiting distinct search behav-
ior. The RA scheme based DE algorithm is called RADE,
which has a simple structure and thus is easy to implement.
Comprehensive experiments have been conducted to verify
its effectiveness and efficiency, and also it is compared with
four other DE schemes and five other state-of-the-art DE
variants.

The rest of this paper is organized as follows. In Sect. 2,
the classic DE is briefly introduced. Section 3 reviews the
related works on DE. The proposed RA scheme and RADE
algorithm are described in Sect. 4 in detail. Experimental
results are reported in Sect. 5. Finally, this study is concluded
in Sect. 6.

2 Classic differential evolution

DE is a population-based stochastic search algorithm for
global numerical optimization. Similar to other EAs, DE
starts with a population of NP vectors representing the can-
didate solutions, where NP indicates the population size.
Let us assume that X G

i = [xG
i,1, xG

i,2, . . . , xG
i,D] is the i th

candidate solution vector at the Gth generation, where i =
1, 2, . . . , NP, and D is the problem dimension. The frame-
work of DE mainly consists of the following three evolution-
ary operations: mutation, crossover, and selection.

2.1 Mutation operation

At each generation G, DE creates a mutant vector (or donor
vector) V G

i = [vG
i,1, v

G
i,2, . . . , v

G
i,D] for each individual (or

target vector) X G
i = [xG

i,1, xG
i,2, . . . , xG

i,D] in the current popu-
lation, and the following are five well-known mutation strate-
gies.

• DE/rand/1

V G
i = X G

r1 + F · (X G
r2 − X G

r3) (1)

• DE/rand/2

V G
i = X G

r1 + F · (X G
r2 − X G

r3) + F · (X G
r4 − X G

r5) (2)

• DE/best/1

V G
i = X G

best + F · (X G
r1 − X G

r2) (3)

• DE/best/2

V G
i = X G

best +F · (X G
r1−X G

r2)+F · (X G
r3−X G

r4) (4)

• DE/current-to-best/1

V G
i = X G

i +F · (X G
best −X G

i)+F · (X G
r1−X G

r2) (5)

In the above equations, the indices r1, r2, r3, r4 and r5
are mutually exclusive integers which are randomly cho-
sen from [1, NP], and they all are different from the base
index i . The scaling factor F is a real number that controls
the mutation step of the difference vector. X G

best is the best
individual in terms of fitness value at the current generation
G. In addition to the above listed mutation strategies, there
exists several other ones in some improved DE variants, such
as the “DE/current-to-pbest” (Zhang and Sanderson 2009),
the proximity-based mutation operators (Epitropakis et al.
2011), and the ranking-based mutation operators (Gong and
Cai 2013).

2.2 Crossover operation

The crossover operation aims to enhance diversity of the pop-
ulation, which takes place after a mutant vector is generated
through mutation operator (Das and Suganthan 2010). In this
operation, a trial vector U G

i = [uG
i,1, uG

i,2, . . . , uG
i,D] is con-

structed by mixing the components of a mutant vector V G
i

with that of its target vector X G
i . The widely used binomial

crossover is formulated as follows.

uG
i, j =

{
vG

i, j if rand j (0, 1) ≤ CR or j = jrand

xG
i, j otherwise

(6)

123

Enhancing differential evolution 2211

where rand j (0, 1) is a anew generated random number uni-
formly sampled from [0, 1] for each dimension, and C R ∈
[0, 1] is called the crossover rate. The jrand is a randomly
chosen integer from [1, D], which can guarantee that the trial
vector differs from its target vector. Another commonly used
crossover operation is exponential crossover (Neri and Tir-
ronen 2010; Das and Suganthan 2010; Wang et al. 2012).

2.3 Selection operation

After the crossover operation, a greedy selection mechanism
is used to select the better one from the target vector X G

i and
the trial vector U G

i according to their fitness values f (·). If,
and only if, the trial vector is better than the target vector,
X G+1

i is set to U G
i ; otherwise, X G+1

i is kept the same with
X G

i .

X G+1
i =

{
U G

i if f (U G
i) < f (X G

i)

X G
i otherwise.

(7)

3 Related works

Although the classic DE has shown powerful performance in
solving benchmark and real-world problems, its performance
highly depends on the chosen mutation strategy and control
parameter settings. Therefore, considerable efforts have been
devoted to improve the robustness and convergence perfor-
mance of DE by dynamically selecting the mutation strategy
and/or setting the control parameters, during the last decade.
In this section, a brief overview of the relative works is pre-
sented as follows.

Liu and Lampinen (2005) proposed a fuzzy adaptive DE
(FADE), which uses a fuzzy logic control approach to adapt
the scaling factor F and crossover rate CR. The results on
high dimensional problems show that FADE outperforms the
classic DE, and shows a faster convergence rate. Brest et al.
(2006) presented a self-adaptive DE (jDE), in which the con-
trol parameters F and CR are encoded into the individual and
then are adjusted by introducing two new parameters τ1 and
τ2. The better values of these encoded control parameters
lead to better individuals which, in turn, are more likely to
survive and produce offspring and, hence, propagate these
better parameter values. In order to eliminate the need of
manual tuning of control parameters, Salman et al. (2007)
investigated a self-adaptive DE (SDE), in which the scal-
ing factor F is adapted by using the mechanism proposed
in Abbass (2002), where F is calculated as a stochastic lin-
ear combination of the scaling factors of randomly selected
individuals. The values of CR are generated by sampling
from a normal distribution N (0.5, 0.15). Moreover, the per-
formance of SDE using the ring neighborhood topology is
also investigated in Salman et al. (2007). Zhang and Sander-
son (2009) proposed an adaptive DE with optional external

archive (JADE). In JADE, the scaling factor F and crossover
rate CR are generated according to a normal distribution
N (μC R, 0.1) and a Cauchy distribution C(μF , 0.1), respec-
tively. Both of the parameters μC R and μF are related to the
successful experiences of generating good offspring enter-
ing the next generation, and they all are initialized to 0.5 at
first. Ghosh et al. (2010, 2011) proposed a simple yet effec-
tive adaptation technique, fitness-based adaptation scheme,
for tuning F and CR, and the resulting algorithm was called
FiADE. In their approach, each individual in the population
has its own settings for F and CR, which can be considered
as a dither method according to the classification defined by
Price et al. (2005). The fitness-based adaptation schemes are
based on the objective function values or fitness values of the
target vectors and donor vectors. The presented results show
that the performance of FiADE is very competitive compared
with other DE variants.

In addition to dynamical setting of the control parameters,
the following approaches also focus on dynamical selection
of mutation strategies. Qin and Suganthan (2005) and Qin
et al. (2009) proposed a self-adaptive DE (SaDE), in which
multiple mutation strategies are adaptively adjusted through
learning from the previous successful experiences. The con-
trol parameters F and CR are also adaptively set by sampling
their values from normal distributions with different mean
parameters. Mallipeddi et al. (2011) proposed to employ an
ensemble of mutation strategies and control parameters with
DE (EPSDE). In EPSDE, multiple mutation strategies with
distinct characteristics are adopted to form a strategy candi-
date pool, and similarly, two parameter candidate pools are
constructed for F and CR. Then, the combinations of differ-
ent mutation strategies and parameter values which produced
better offspring are stored to guide the search process. The
experimental results showed that EPSDE outperforms SaDE,
jDE, and JADE on a majority of test problems. Gong et al.
(2011b) proposed a strategy adaptation mechanism (SaM)
to choose a more suitable strategy from a strategy candi-
date pool constructed by four different strategies. The SaM
is integrated into the framework of JADE, and the resulting
algorithm is called SaJADE. The experiments conducted on
20 benchmark problems and two real-world problems show
that SaJADE is promising. Wang et al. (2011b) proposed a
composite DE (CoDE) which utilizes a strategy candidate
pool and a parameter candidate pool. CoDE generates three
trial vectors at the same time by using three strategies from
the strategy candidate pool with randomly selected parame-
ter values from the parameter candidate pool, then the best
one among the three trial vectors will head to the selec-
tion operation. Very recently, Wang et al. (2013) proposed
a Gaussian bare-bones DE (GBDE) in order to minimize the
effects of DE control parameters. In the GBDE, a Gaussian
mutation strategy is defined by sampling the search space
between the best individual and the current one. Furthermore,

123

2212 X. Zhou et al.

the classic mutation strategy, DE/best/1, is combined with
the Gaussian mutation strategy to improve the convergence
speed of GBDE, and this modified version is called MGBDE.
The reported empirical results verified that MGBDE achieves
better performance than GBDE and some other state-of-the-
art DE variants on many unimodal and multimodal functions.

Furthermore, some other operations are incorporated into
DE. Sun et al. (2005) developed DE/EDA, which combines
DE with estimation of distribution algorithm (EDA). Noman
and Iba (2008) incorporated an adaptive local search (LS)
operation into the classic DE. Rahnamayan et al. (2008)
proposed an opposition-based DE (ODE) which employs
opposition-based learning (OBL) strategy for population ini-
tialization and for generating new solutions. The experimen-
tal results indicate that the convergence speed and the solu-
tion accuracy of DE can be clearly improved by making use of
the OBL strategy. Similarly, Wang et al. (2011a) proposed an
improved version of OBL, i.e. generalized opposition-based
learning (GOBL). The GOBL strategy is incorporated into
DE to solve high-dimensional problems efficiently. Caponio
et al. (2009) proposed a super-fit memetic DE (SFMDE),
in which PSO and two other local searchers are incorpo-
rated. DE/BBO was proposed by Gong et al. (2011a), which
combines DE with biogeography-based optimization (BBO)
algorithm.

In this section, we only presented a brief overview of some
related works, interested readers can refer to two comprehen-
sive surveys of DE in Das and Suganthan (2010) and Neri
and Tirronen (2010).

4 The proposed approach

As we all know, the performance of DE highly depends on
the chosen mutation strategy and parameter settings. For dif-
ferent problems at hand, DE realizations employing differ-
ent mutation strategies and parameter settings usually per-
form differently. Therefore, over the past decade, there is an
increasing research trend in the DE community that, adaptive
or self-adaptive techniques are developed to select a proper
mutation strategy and to set suitable parameter values for
DE during its evolutionary search. The reported results show
the superior performance of these techniques, which greatly
improve the robustness of DE. It is worth to note that a com-
mon characteristic of these adaptive or self-adaptive tech-
niques is that, the previous experiences of generating promis-
ing candidate solutions in term of fitness values, as the feed-
back from the evolutionary search, are utilized to guide the
search process. Inspired by this, the fitness information of
the population is utilized in our approach to allocate muta-
tion strategies with variuos parameter settings for different
individuals. Moreover, during the evolution of DE, different
individuals of the population usually move through different

regions in the search landscape. For these individuals, the per-
formance of their associated mutation strategies and parame-
ter settings is influenced by the characteristics of the regions
being explored by them (Gong et al. 2011b). Therefore, this
motivates us to utilize the the positional information of indi-
viduals as well as the fitness information in our approach.

4.1 The role assignment scheme

In the RA scheme, the population is divided into three groups
by considering both the fitness information and positional
information of its individuals. The three groups are assigned
with three different roles: exploiter, follower, and explorer.
Each role is desired to exhibit different search behavior by
employing different mutation strategies and parameter set-
tings. The three roles are explained as follows.

Exploiters are expected to be the individuals which have
good fitness values, and are far away from the best indi-
vidual of current population in the search landscape. It is
possible that they locate on/around different local optimal
regions when solving a multimodal function. The objective
of this role is to exhibit local search for finding better can-
didate solutions in its neighborhood. Followers are expected
to be the individuals which also have good fitness values but
close to the best individual of current population in the search
landscape. It is possible that they locate on/around the same
local optimal region with the best individual when solving a
multimodal function. In order to take the advantages of their
good fitness values, the search behavior of the followers is
also focused on their neighborhood. The remaining individ-
uals in the population are identified as explorers. Obviously,
the explorers may neither have good fitness values nor near
the best individual of current population in the search land-
scape. It can be inferred from the name that explorers aim to
explore new regions for diversifying the population.

The following steps describe how to divide the population
into three groups.

Step 1. Calculate the fitness difference between each indi-
vidual Xi and the best individual Xb, and indicate it as
� fi (� fi = f (Xi) − f (Xb)). Then, all the � fi can be
collected to calculate the mean value � fmean as follows.

� fmean = 1

N P − 1

NP∑
i=1

(f (Xi) − f (Xb)) (8)

where NP is the population size, f (xi) denotes the fitness
value of Xi , and the fitness value of Xb is denoted as f (xb).
Note that in the above equation when i equals to the index
of Xb, the � fi is zero. After getting the � fmean , a set A
is defined to contain those individuals of which the � fi are
all smaller than � fmean . Mathematically, the set A can be
formulated according to the next equation.

A = {Xi |� fi ≤ � fmean, i = 1, 2, . . . , N P} (9)

123

Enhancing differential evolution 2213

Step 2. Similar to the � fi and � fmean , �di is used to indi-
cate the Euclidean distance from each individual Xi to the
best individual Xb, and �dmean represents the mean Euclid-
ean distance.

�dmean = 1

NP − 1

NP∑
i=1

√∑D

j=1
(xi, j − xb, j)2 (10)

where xi, j and xb, j are the j th variable values of Xi and Xb,
respectively. Then, we select the individuals having smaller
�di than �dmean to construct a new set B. Similar to the set
A, B can also be formally defined as follows.

B = {Xi |�di ≤ �dmean, i = 1, 2, . . . , NP} (11)

Step 3. It can be inferred that all the individuals contained
in the set A have better fitness values than the remaining indi-
viduals in the current population P. According to the explains
of exploiter and follower, the positions of those individuals
in the set A may be one of the two cases: (1) they cluster
around the best individual; or (2) they are far away from the
best individual and even on/around different local optimal
regions when the problem is multimodal. But in the set B, all
the individuals are closer to the best individual in the search
landscape than the remaining ones in the population. It means
that the individuals in the set B may include the ones which
have good fitness values and also close to the best individual.
Recognizing the features of set A and B, the exploiters and
followers can be picked out from the population by imple-
menting set operations on A and B. The following Eqs. (12)
and (13) show the formal definitions for the exploiters and
followers, respectively. A set C is defined to represent the
exploiters, and a set D is defined to denote the followers.

C = A − B (12)

D = A ∩ B (13)

As seen from the above two Eqs. (12) and (13), the set C
contains the individuals which have good fitness values but
are far away from the best individual. While the set D contains
the individuals that have good fitness values and also close
to the best individual. Moreover, it is worth to note that the
best individual of current population is always included in
the set C. For the explorers, the following equation is used
to define them.

E = P − (C ∪ D) (14)

where the set E is defined to represent the explorers, and the
set P is the current population. It can be seen that the individ-
uals that are not contained in both C and D are identified as
the explorers. It is obviously that these individuals may nei-
ther have good fitness values nor close to the best individual
in the search landscape.

The relationships among the aforementioned sets are
described in Venn diagram in Fig. 1, where the rectangle

Fig. 1 The relationships among different sets

denotes the whole population P, and the two ellipses repre-
sent the set A and B. The areas marked with horizontal lines
and vertical lines in the set A denote the set C and D, respec-
tively. The blank areas in the set P (including parts of the set
B) indicate the set E.

4.2 Selection of mutation strategies and parameter settings

After defining the three roles, it is important to select proper
mutation strategies and parameter settings for them. Accord-
ing to their objectives, the following combinations of muta-
tion strategies and parameter settings are selected for the
three roles.

• Exploiter
DE/best/1 (F = 0.5 and CR = 0.1)

• Follower
DE/rand/1 (F = 0.6 and CR = 0.1)

• Explorer
DE/rand/1 (F = 0.7 and CR = 0.9)

The explanations for such selection can be listed as follows.

(a) For the exploiters, their search behavior is focused on
their neighborhood, because they have good fitness val-
ues, which implies that better candidate solutions may
locate around their positions in the search landscape.
Therefore, the DE/best/1 strategy is selected for them,
since this strategy is helpful to exploit the neighborhood
and can accelerate convergence (Yang et al. 2008). For
the associated control parameters, it is known that a large
value of F can make the mutant vectors distribute widely
in the search space and can increase the population diver-
sity. In contrast, a small value of F makes the search focus
on the neighborhood, and thus it can speed up the con-
vergence (Wang et al. 2011b). Similar to F, a large CR
value can also be helpful to encourage the diversity, but a
small one can facilitate the convergence (Zaharie 2009).

123

2214 X. Zhou et al.

So, in order to satisfy the objectives of the exploiters, F
is set to 0.5 and CR is set to 0.1. These two values are also
suggested by other researchers, such as Storn and Price
(1997) suggested that F should be 0.5 as an good initial
choice and CR can be set to 0.1 or 0.9, and Ronkkonen
et al. (2005) suggested that F should be chosen from the
range [0.4, 0.95], and CR should be between [0.0, 0.2]
or [0.9, 1.0].

(b) For the followers, although their objectives are also to
search their neighborhood, the DE/rand/1 strategy, more
explorative than the DE/best/1 strategy, is selected for
them. According to the definition, the followers may
locate around the best individual in the search landscape.
If the DE/best/1 strategy is used, the available search
region of the followers may overlap with that of the
best individual. Therefore, in order to expand the search
regions, the DE/rand/1 strategy is used and the value of
F is also slightly larger than the exploiters. The value of
CR is still the same as that of the exploiters, which is
helpful to focus the search on the neighborhood.

(c) For the explorers, the DE/rand/1 strategy is also selected,
because this strategy is the most commonly used one
which has no bias to any special search directions, and
hence is very robust. But compared with the followers,
both of the F and CR values are larger, because the objec-
tives of the explorers are to explore new regions and to
maintain the population diversity for powerful ability in
global exploration.

4.3 The framework of RADE

The framework of RADE is described in the following Algo-
rithm 1, where FEs represents the number of fitness evalu-
ations, and the MaxFEs is the maximum number of fitness
evaluations. NP is the population size.

Note that the number of individuals of different roles
changes dynamically during the evolution process. For bet-
ter clarification, the 2-D Shekel’s Foxholes function illus-
trated in Fig. 2 is employed as a case study. This func-
tion has 24 distinct local minima and one global mini-
mum f (−32,−32) = 0.998004, in the range [65.536,
65.536]2, its detailed definition can be found in Yao’s lit-
erature (Yao et al. 1999). In this case study, the RADE
is used to solve the Shekel’s Foxholes problem to show
its search behavior. For the control parameters, NP is
set to 30, and the others are the same as description in
the Sect. 4.2.

Figure 3 shows the contour plots of the Shekel’s Fox-
holes function and the distribution of different roles at the
first, 5th, 10th, and 20th generations. The markers: triangle,
circle and star denote the exploiters, followers, and explor-
ers, respectively; besides, the triangle filled with blue color
is the best individual. At the beginning of evolution, all the

Algorithm 1 The framework of RADE
1: Generate an initial population P;
2: Evaluate the fitness value of each individual Xi ;
3: F Es = N P;
4: while F Es ≤ Max F Es do
5: Select the best individual as Xb from P;
6: Calculate the mean fitness difference � fmean according to Eq. (8);
7: Calculate the mean Euclidean distance �dmean according to Eq.

(10);
8: According to Eqs. (12)-(14), divide the population P into the

exploiters, followers and explorers;
9: for i = 1 to N P do
10: According to its role, generate a trial vector for Xi by using

the corresponding mutation strategy and associated parameter
values;

11: Select the better one from the trial vector and Xi to enter the
next generation;

12: end for
F Es = F Es + N P;

13: end while

−60
−40

−20
0

20
40

60

−60
−40

−20
0

20
40

60

0

100

200

300

400

500

Fig. 2 3-D plot of the Shekel’s Foxholes function

individuals almost cover the entire search space due to the
uniform random initialization. At this stage, the exploiters
and followers are almost locate at or around different local
optimal regions. Then, the search regions become smaller
and smaller as the evolution proceeds. It is important to
note that different exploiters are usually far away from the
best individual while the followers are much closer to the
best individual, and the explorers distribute on “poorer”
search regions. Moreover, it can be seen that the number
of explorers is decreasing with the evolution, while the num-
ber of exploiters and followers is increasing. This implies
that the search behavior of RADE gradually transforms from
exploration to exploitation as the number of generations
increases.

123

Administrator
Highlight

Enhancing differential evolution 2215

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

(a) (b)

(c) (d)

Fig. 3 The distribution of different roles at different generations

5 Experimental verification

5.1 Benchmark functions

In order to verify the performance of the proposed RADE
algorithm, a set of 23 benchmark functions is used in the fol-
lowing experiments. The first thirteen are well-known scal-
able functions (Yao et al. 1999). Among these functions,
F01–F04 are unimodal functions. F05 is the Rosenbrock
function, which is multimodal when D > 3 (Shang and Qiu
2006). F06 is a step function which has one minimum and
it is discontinuous, while F07 is a noisy quartic function.
F08–F13 are multimodal functions with many local minima.
The remaining ten shifted and rotated benchmark functions
(F14–F23) are from CEC 2005 competition (Suganthan et al.
2005). Brief descriptions of these functions are summarized
in Table 1.

5.2 Comparison of RADE with other DE schemes

In this section, in order to evaluate the effectiveness of RADE,
three different DE schemes (DE1–DE3) are compared with
RADE, which are selected for the three roles, respectively.
Moreover, the most commonly used DE scheme (DE4) is
also included as a baseline for comparison.

(a) DE1: best/1/bin (F = 0.5 and C R = 0.1);
(b) DE2: rand/1/bin (F = 0.6 and CR = 0.1);
(c) DE3: rand/1/bin (F = 0.7 and CR = 0.9);
(d) DE4: rand/1/bin (F = 0.5 and CR = 0.9).

This current experiment includes two aspects: (1) quality
of the final solutions; and (2) scalability test. For common
parameters, the above four contestant DE schemes use the
same settings as RADE, such as the same population size

123

2216 X. Zhou et al.

Table 1 Twenty-three
benchmark functions used in our
experimental verification

Functions Name Search range Global optimum

F01 Sphere [−100, 100] 0

F02 Schwefel 2.22 [−10, 10] 0

F03 Schwefel 1.2 [−100, 100] 0

F04 Schwefel 2.21 [−100, 100] 0

F05 Rosenbrock [−30, 30] 0

F06 Step [−100, 100] 0

F07 Quartic with noise [−1.28, 1.28] 0

F08 Schwefel 2.26 [−500, 500] −418.98 · D

F09 Rastrigin [−5.12, 5.12] 0

F10 Ackley [−32, 32] 0

F11 Griewank [−600, 600] 0

F12 Penalized 1 [−50, 50] 0

F13 Penalized 2 [−50, 50] 0

F14 Shifted sphere [−100, 100] −450

F15 Shifted Schwefel’s problem 1.2 [−100, 100] −450

F16 Shifted rotated high conditioned
elliptic function

[−100, 100] −450

F17 Shifted Schwefel’s problem 1.2 with
noise in fitness

[−100, 100] −450

F18 Schwefel’s problem 2.6 with global
optimum on bounds

[−100, 100] −310

F19 Shifted Rosenbrock [−100, 100] 390

F20 Shifted rotated Griewank’s function
without bounds

[0, 600] −180

F21 Shifted rotated Ackley’s function with
global optimum on bounds

[−32, 32] −140

F22 Shifted Rastrigin’s function [−5, 5] −330

F23 Shifted rotated Rastrigin’s function [−5, 5] −330

and stopping criterion. The detailed parameter settings are
listed as follows.

(a) Population size: NP = 30.
(b) Stop criterion: There are two cases: (1) for the first exper-

iment, each algorithm stops when the number of fitness
evaluations (FEs) reaches the maximum value. For the
first thirteen functions, the maximum value (MaxFEs)
is set to 200,000, but for the remaining ten CEC 2005
functions, MaxFEs is equal to 300,000; and (2) for the
second experiment, MaxFEs is set to 5,000 · D for the
first 13 functions, but MaxFEs is set to 10,000 · D for
the remaining functions, where D is the dimension of
the problem.

(c) Number of runs: each algorithm is run 30 times per func-
tion.

5.2.1 Comparison of final solution’s quality

The results of all functions for D = 30 are shown in Table
2, where “Mean error” indicates the mean function error
value, and “Std dev” represents the corresponding standard

deviation. In order to compare the significance between two
algorithms, the paired Wilcoxon signed-rank test is used.
The Wilcoxon signed-rank test is a non-parametric statis-
tical hypothesis test, which can be used as an alternative to
the paired t test when the results cannot be assumed to be
normally distributed (Garca et al. 2009, 2010). In Table 2,
according to the Wilcoxon’s test, the results are summarized
as “w/l/t”, which denotes that RADE wins on w functions,
loses on l functions, and ties on t functions, compared with
its corresponding competitor. “†”, “‡” and “≈” indicate our
approach is respectively better than, worse than, or similar to
its competitor according to the Wilcoxon signed-ranked test
at α = 0.05.

With respect to the overall performance, from Table 2,
we can see that, our approach achieves better results than
other algorithms on the majority of test functions. To be spe-
cific, RADE outperforms DE1 on 16 out of 23 functions
and only loses on three functions. On the unimodal func-
tions F01 and F02, DE1 achieves the best performance, due
to its greedy strategy. It is worth to note that, although the
mean values of DE1 on F12 and F13 are much worse than
RADE, the performance between DE1 and RADE are similar

123

Enhancing differential evolution 2217

Table 2 Comparisons of mean function error values and standard deviation for all test functions at D = 30

Function DE1 DE2 DE3 DE4 RADE
Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

F01 2.19E−148 ± 4.33E−148‡ 4.78E−84 ± 4.43E−84‡ 5.30E−45 ± 1.79E−44† 5.30E+00 ± 1.36E+01† 6.64E−76 ± 1.66E−75

F02 1.33E−83 ± 1.06E−83‡ 9.74E−49 ± 5.89E−49‡ 5.49E−24 ± 9.33E−24† 2.12E−10 ± 1.14E−09≈ 5.19E−43 ± 3.37E−43

F03 4.12E+01 ± 2.34E+01† 1.53E+03 ± 3.52E+02† 4.58E−08 ± 9.90E−08‡ 5.85E−02 ± 2.55E−01† 1.94E−07 ± 2.45E−07

F04 2.59E+01 ± 5.37E+00† 4.17E−09 ± 1.37E−09‡ 4.15E+00 ± 3.47E+00† 1.96E+01 ± 5.22E+00† 2.58E−07 ± 9.42E−08

F05 4.38E+01 ± 2.62E+01† 2.94E+01 ± 1.04E+01† 4.83E+00 ± 1.67E+01† 3.62E+03 ± 7.36E+03† 4.42E−11 ± 1.56E−10

F06 6.67E−02 ± 2.49E−01≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00

F07 3.30E−03 ± 1.07E−03‡ 5.26E−03 ± 9.64E−04≈ 6.31E−03 ± 2.02E−03† 1.08E−02 ± 6.93E−03† 4.60E−03 ± 1.18E−03

F08 3.74E+02 ± 2.32E+02† 3.82E−04 ± 0.00E+00‡ 1.03E+03 ± 7.47E+02† 1.44E+03 ± 4.72E+02† 3.16E+01 ± 6.06E+01

F09 2.72E+00 ± 1.54E+00† 3.32E−02 ± 1.79E−01≈ 2.77E+01 ± 9.40E+00† 1.88E+01 ± 6.18E+00† 6.63E−02 ± 2.48E−01

F10 1.76E−14 ± 4.21E−15† 4.94E−15 ± 1.57E−15≈ 4.00E−15 ± 0.00E+00‡ 2.13E+00 ± 1.17E+00† 5.54E−15 ± 1.76E−15

F11 1.23E−03 ± 3.23E−03† 0.00E+00 ± 0.00E+00≈ 1.48E−03 ± 3.90E−03† 1.52E−01 ± 3.70E−01† 0.00E+00 ± 0.00E+00

F12 1.73E−02 ± 7.61E−02≈ 1.57E−32 ± 5.47E−48≈ 3.46E−03 ± 1.86E−02≈ 2.19E+02 ± 9.13E+02† 1.57E−32 ± 5.47E−48

F13 3.66E−04 ± 1.97E−03≈ 1.35E−32 ± 5.47E−48≈ 1.10E−03 ± 3.30E−03† 3.44E+04 ± 1.14E+05† 1.35E−32 ± 5.47E−48

F14 7.58E−14 ± 2.68E−14† 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 1.15E+01 ± 2.50E+01† 0.00E+00 ± 0.00E+00

F15 1.11E+01 ± 1.54E+01† 3.32E+02 ± 9.10E+01† 4.45E−12 ± 6.12E−12‡ 5.68E+00 ± 2.90E+01† 9.71E−11 ± 1.13E−10

F16 1.65E+07 ± 5.56E+06† 2.46E+07 ± 6.98E+06† 1.75E+05 ± 1.20E+05‡ 2.99E+05 ± 1.37E+05≈ 2.48E+05 ± 1.11E+05

F17 9.91E+02 ± 4.14E+02† 5.03E+03 ± 9.98E+02† 1.80E−03 ± 3.72E−03‡ 4.88E+00 ± 8.28E+00† 2.10E−03 ± 3.97E−03

F18 3.15E+03 ± 5.04E+02† 4.20E+03 ± 4.72E+02† 3.91E+02 ± 2.55E+02† 2.87E+03 ± 6.39E+02† 2.67E+02 ± 2.34E+02

F19 6.59E+01 ± 4.24E+01† 4.79E+01 ± 2.42E+01† 3.99E−01 ± 1.20E+00† 1.80E+07 ± 4.07E+07† 2.27E−14 ± 2.78E−14

F20 2.14E−02 ± 1.91E−02† 6.53E−02 ± 3.13E−02† 6.07E−03 ± 9.13E−03≈ 4.27E−01 ± 6.46E−01≈ 2.55E−03 ± 5.74E−03

F21 2.10E+01 ± 3.91E−02≈ 2.09E+01 ± 4.32E−02≈ 2.09E+01 ± 4.53E−02≈ 2.10E+01 ± 4.05E−02† 2.09E+01 ± 5.57E−02

F22 5.74E+00 ± 3.86E+00† 9.95E−02 ± 2.98E−01≈ 2.84E+01 ± 7.73E+00† 2.78E+01 ± 8.52E+00† 3.32E−02 ± 1.79E−01

F23 8.95E+01 ± 1.48E+01† 1.32E+02 ± 1.01E+01† 1.51E+02 ± 5.82E+01† 4.28E+01 ± 1.25E+01‡ 6.67E+01 ± 1.75E+01

w/ l/t 16/3/4 9/4/10 13/5/5 18/1/4 –

according to the paired Wilcoxon signedrank test, since the
bad results achieved by DE1 appeared as noises for several
times in the whole 30 runs. For shifted and rotated functions,
however, DE1 could hardly achieve promising solutions. It
demonstrates that DE/best/1 is only suitable for solving uni-
modal and simple multimodal problems. Compared to DE2,
RADE wins on nine functions but loses on four functions. It
is impressive that DE2 performs similar as RADE on F06–
F13. However, on the shifted and/or rotated functions F15–
F20, RADE is better than DE2. The possible reason is that
DE/rand/1 coupled with low CR value is suitable for solving
simple multimodal functions, but not for the shifted and/or
rotated functions. Although DE3 achieves the best perfor-
mance on F15–F17, RADE performs better on 13 functions.
Compared with its own results on the first thirteen func-
tions, DE3 seems to perform better on the remaining ten
CEC 2005 functions. It may imply that the DE/rand/1 strat-
egy with a larger CR value may be more suitable for the
shifted and/or rotated functions. The most commonly used
DE scheme, DE4, is much worse than RADE, since RADE

wins on 18 out of 23 functions but only loses on one function,
F23.

Figure 4 shows the convergence curves of the four DE
schemes and RADE on some selected functions. Moreover,
the selection probability of each role is also illustrated in the
right column of Fig. 4.

From the right column of Fig. 4, it can be observed that
the selection probability of exploiters is much lower than that
of the other two roles, and it decreases as the evolution pro-
ceeds. This meets our expectation, the selection probability
of exploiters may be the lowest among the three roles, and
decreases at the middle or late stages of evolution. Because
the search region covered by the population becomes smaller
and smaller as the evolution proceeds, and hence, different
individuals tend to cluster around the best individual. This
implies that the number of those individuals that have good
fitness values and are also far away from the best individual
would decrease significantly. For the followers and explorers,
there is a trend that the selection probability of the explor-
ers is slightly larger than that of the followers at the early

123

2218 X. Zhou et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4 The convergence curves of four DE schemes and RADE on four selected functions at D = 30 are illustrated in the left column, and the
selection probability of each role is shown in the right column

stage of evolution, and then it becomes slightly lower than or
similar to that of the followers, at the middle and late stages,
see the F05 and F18. But there is an exception, on the F12,
that the selection probability of followers is almost always
larger than that of the explorers. The possible reason is that

a greedy mutation strategy is more suitable for this func-
tion, thus exploitative search behavior is encouraged. This
can also be proved by the corresponding convergence curves
illustrated in the left column, where the DE/best/1/ strategy
(namely DE1) achieves the best performance. In summary,

123

Enhancing differential evolution 2219

based on the results and analysis, our approach is capable
of providing more superior overall performance to the corre-
sponding DE schemes. Our approach attempts to balance the
local search ability of the exploiters and followers, and the
global search ability of the explorers. In the next subsection,
we will test the effect of dimensionality on our approach.

5.2.2 Scalability test

In order to better understanding of the performance, in this
subsection, the scalability test is conducted. For functions
F01–F13, the dimensions are scaled at D = 50, 100, and
200. While for functions F14–F23, only D = 50 is used,
since these functions are defined up to D = 50 (Sugan-
than et al. (2005)). The results are respectively shown in the
Tables 3, 4 and 5 for D = 50, 100 and 200. From the Table
3, it can be observed, although the complexity of a problem
increases with its dimension, the performance of RADE is
not always affected; instead, RADE consistently get signifi-
cantly better results than its competitors. Specifically, RADE
wins on 11 functions at D = 50 while on nine functions at

D = 30, compared with DE2. For DE3 and DE4, RADE
outperformed DE3 on 14 functions, and does not lose on any
function compared with DE4.

For functions F01–F13 at D = 100 and D = 200, it
is clear that RADE achieves the best performance among
the compared DE schemes. It is impressive to see that the
performance of DE2 is also very promising and competitive,
since both DE2 and RADE achieve similar performance on
several functions (F08–F13) when the dimension increases
from 100 to 200. But considering the performance of RADE
on the ten CEC 2005 functions when D = 30 and D = 50,
we can draw the conclusion that RADE is better than DE2
as a whole.

5.2.3 Computational cost of RADE

In RADE, we adopt the RA scheme for each individ-
ual to select its mutation strategy and parameter settings.
One important feature of the RA scheme is that the posi-
tional information of each individual is used, however this
requires additional computational cost to calculate the dis-

Table 3 Comparisons of mean function error values and standard deviation for all test functions at D = 50

Funcion DE1 DE2 DE3 DE4 RADE
Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

F01 1.19E−186 ± 0.00E+00‡ 7.11E−106 ± 9.19E−106‡ 2.14E−56 ± 8.91E−56† 8.75E+00 ± 3.09E+01† 1.71E−96 ± 3.50E−96

F02 1.47E−104 ± 2.10E−104‡ 2.65E−61 ± 1.84E−61‡ 3.97E−30 ± 5.26E−30† 2.63E−29 ± 1.41E−28† 4.91E−54 ± 3.77E−54

F03 1.72E+01 ± 2.71E+01† 7.98E+02 ± 1.46E+02† 4.84E−11 ± 8.44E−11‡ 4.51E−02 ± 2.37E−01† 1.85E−10 ± 1.45E−10

F04 2.58E+01 ± 6.41E+00† 1.10E−11 ± 4.31E−12‡ 3.89E+00 ± 3.06E+00† 2.05E+01 ± 4.33E+00† 1.95E−09 ± 8.38E−10

F05 4.04E+01 ± 2.92E+01† 3.09E+01 ± 1.57E+01† 6.75E+00 ± 2.03E+01† 6.47E+03 ± 1.66E+04† 1.32E−20 ± 6.47E−20

F06 6.67E−02 ± 2.49E−01≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00

F07 2.15E−03 ± 7.04E−04‡ 4.12E−03 ± 1.13E−03† 4.50E−03 ± 1.67E−03† 7.56E−03 ± 3.67E−03† 3.58E−03 ± 8.07E−04

F08 2.28E+02 ± 1.66E+02† 3.82E−04 ± 0.00E+00‡ 9.04E+02 ± 4.13E+02† 1.30E+03 ± 4.65E+02† 3.95E+01 ± 5.58E+01

F09 2.39E+00 ± 1.81E+00† 3.32E−02 ± 1.79E−01≈ 3.02E+01 ± 1.01E+01† 1.90E+01 ± 5.85E+00† 9.95E−02 ± 2.98E−01

F10 1.83E−14 ± 4.72E−15† 4.47E−15 ± 1.21E−15≈ 4.00E−15 ± 0.00E+00‡ 2.03E+00 ± 1.01E+00† 5.30E−15 ± 1.71E−15

F11 9.86E−04 ± 3.16E−03≈ 0.00E+00 ± 0.00E+00≈ 2.87E−03 ± 4.97E−03† 1.69E−01 ± 2.14E−01† 4.93E−04 ± 1.84E−03

F12 1.57E−32 ± 5.47E−48≈ 1.57E−32 ± 5.47E−48≈ 3.11E−02 ± 1.04E−01† 1.10E+03 ± 3.94E+03† 1.57E−32 ± 5.47E−48

F13 3.66E−04 ± 1.97E−03≈ 1.35E−32 ± 5.47E−48≈ 3.66E−04 ± 1.97E−03† 5.84E+04 ± 1.83E+05† 1.35E−32 ± 5.47E−48

F14 1.53E−13 ± 3.64E−14† 5.68E−14 ± 0.00E+00† 0.00E+00 ± 0.00E+00‡ 2.44E+02 ± 7.40E+02† 4.17E−14 ± 2.51E−14

F15 1.68E+03 ± 6.33E+02† 1.30E+04 ± 1.90E+03† 5.33E−04 ± 6.54E−04‡ 2.36E−02 ± 5.32E−02≈ 3.34E−02 ± 3.72E−02

F16 5.40E+07 ± 1.53E+07† 8.84E+07 ± 1.83E+07† 4.86E+05 ± 1.57E+05‡ 5.44E+05 ± 1.96E+05≈ 7.33E+05 ± 2.76E+05

F17 1.82E+04 ± 4.54E+03† 3.61E+04 ± 4.43E+03† 3.34E+02 ± 3.06E+02≈ 1.84E+03 ± 1.47E+03† 4.82E+02 ± 4.14E+02

F18 7.70E+03 ± 1.28E+03† 1.05E+04 ± 1.05E+03† 2.62E+03 ± 5.02E+02≈ 6.94E+03 ± 1.20E+03† 2.38E+03 ± 4.10E + 02

F19 1.27E+02 ± 5.86E+01† 6.89E+01 ± 2.51E+01† 3.08E+01 ± 2.87E+01† 1.26E+08 ± 1.52E+08† 1.33E−01 ± 7.16E−01

F20 1.97E−02 ± 1.66E−02† 1.84E−02 ± 2.54E−02† 6.48E−03 ± 8.52E−03† 2.35E+00 ± 3.82E+00† 4.11E−04 ± 2.21E−03

F21 2.11E+01 ± 3.39E−02≈ 2.11E+01 ± 3.31E−02≈ 2.11E+01 ± 3.24E−02≈ 2.11E+01 ± 3.62E−02≈ 2.11E+01 ± 4.90E−02

F22 1.37E+01 ± 4.77E+00† 2.65E−01 ± 4.40E−01≈ 6.54E+01 ± 1.16E+01† 7.96E+01 ± 1.42E+01† 6.30E−01 ± 1.01E+00

F23 2.36E+02 ± 2.39E+01† 3.37E+02 ± 2.42E+01† 3.45E+02 ± 8.82E+01† 1.07E+02 ± 2.11E+01≈ 2.03E+02 ± 2.99E+01

w/ l/t 15/3/5 11/4/8 14/5/4 18/0/5 –

123

2220 X. Zhou et al.

Table 4 Comparisons of mean function error values and standard deviation for all test functions at D = 100

Function DE1 DE2 DE3 DE4 RADE
Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

F01 0.00E+00 ± 0.00E+00‡ 1.17E−215 ± 0.00E+00‡ 1.49E−118 ± 4.11E−118† 2.28E+00 ± 6.66E+00† 1.13E−196 ± 0.00E+00

F02 7.03E−211 ± 0.00E+00‡ 1.01E−123 ± 1.11E−123‡ 8.20E−62 ± 1.54E−61† 1.08E−51 ± 5.81E−51≈ 3.40E−109 ± 5.53E−109

F03 8.21E−01 ± 2.09E+00† 4.50E+01 ± 1.67E+01† 1.21E−25 ± 2.59E−25≈ 1.27E−01 ± 5.84E−01† 4.09E−25 ± 8.82E−25

F04 2.50E+01 ± 5.80E+00† 1.79E−24 ± 7.82E−25‡ 2.72E+00 ± 4.28E+00† 2.11E+01 ± 5.02E+00† 2.36E−19 ± 2.15E−19

F05 3.87E+01 ± 2.72E+01† 2.53E+01 ± 2.04E+00† 4.50E+00 ± 1.68E+01† 1.12E+04 ± 3.80E+04† 1.64E−31 ± 8.85E−31

F06 2.33E−01 ± 7.61E−01† 0.00E+00 ± 0.00E+00≈ 0.0E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00

F07 1.14E−03 ± 2.82E−04‡ 2.22E−03 ± 5.13E−04† 2.51E−03 ± 1.09E−03† 3.63E−03 ± 2.50E−03† 1.97E−03 ± 4.38E−04

F08 3.19E+02 ± 1.75E+02† 3.82E−04 ± 0.00E+00≈ 7.07E+02 ± 3.71E+02† 1.33E+03 ± 5.30E+02† 7.90E+00 ± 2.95E+01

F09 3.05E+00 ± 2.19E+00† 3.32E−02 ± 1.82E−01≈ 2.66E+01 ± 7.18E+00† 2.01E+01 ± 6.40E+00† 1.33E−01 ± 3.38E−01

F10 1.75E−14 ± 4.44E−15† 4.12E−15 ± 6.49E−16≈ 4.00E−15 ± 0.00E+00≈ 1.62E+00 ± 1.02E+00† 4.23E−15 ± 8.86E−16

F11 3.94E−03 ± 6.59E−03† 0.00E+00 ± 0.00E+00≈ 1.89E−03 ± 3.85E−03† 2.82E−01 ± 7.03E−01† 2.47E−04 ± 1.33E−03

F12 1.57E−32 ± 5.47E−48≈ 1.57E−32 ± 5.57E−48≈ 4.19E−02 ± 2.25E−01≈ 9.63E+02 ± 3.22E+03† 1.57E−32 ± 5.47E−48

F13 1.42E−32 ± 3.54E−33≈ 1.35E−32 ± 0.00E+00≈ 1.10E−03 ± 3.30E−03† 6.59E+04 ± 2.36E+05† 1.35E−32 ± 5.47E−48

w/ l/t 8/3/2 3/3/7 9/0/4 11/0/2 –

Table 5 Comparisons of mean function error values and standard deviation for all test functions at D = 200

Funcion DE1 DE2 DE3 DE4 RADE
Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

Mean error ±
standard deviation

F01 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 8.02E−242 ± 0.00E+00† 2.38E+01 ± 5.02E+01† 0.00E+00 ± 0.00E+00

F02 4.90E−324 ± 0.00E+00‡ 4.86E−249 ± 0.00E+00‡ 2.65E−125 ± 1.12E−124† 3.91E−143 ± 2.10E−142† 1.82E−219 ± 0.00E+00

F03 1.47E−04 ± 7.84E−04† 1.50E−01 ± 9.94E−02† 1.59E−55 ± 7.21E−55≈ 7.60E−04 ± 2.73E−03† 3.40E−54 ± 6.78E−54

F04 2.52E+01 ± 5.38E+00† 3.91E−50 ± 3.10E−50‡ 9.49E−01 ± 1.92E+00† 2.05E+01 ± 6.75E+00† 1.31E−39 ± 1.74E−39

F05 3.21E+01 ± 2.43E+01† 2.65E+01 ± 1.04E+01† 4.50E+00 ± 1.68E+01† 3.54E+03 ± 1.15E+04† 0.00E+00 ± 0.00E+00

F06 3.33E−02 ± 1.80E−01≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00

F07 6.46E−04 ± 1.79E−04≈ 1.07E−03 ± 2.32E−04† 1.29E−03 ± 6.23E−04† 2.68E−03 ± 1.33E−03† 8.75E−04 ± 1.93E−04

F08 3.18E+02 ± 2.42E+02† 3.82E−04 ± 0.00E+00≈ 7.36E+02 ± 3.92E+02† 1.34E+03 ± 4.27E+02† 3.55E+01 ± 6.94E+01

F09 2.89E+00 ± 1.57E+00† 9.95E−02 ± 2.98E−01≈ 3.04E+01 ± 9.31E+00† 1.96E+01 ± 5.42E+00† 1.33E−01 ± 3.38E−01

F10 1.88E−14 ± 4.95E−15† 4.00E−15 ± 0.00E+00≈ 4.00E−15 ± 0.00E+00≈ 1.72E+00 ± 7.83E−01† 4.00E−15 ± 0.00E+00

F11 1.73E−03 ± 3.93E−03† 0.00E+00 ± 0.00E+00≈ 2.87E−03 ± 4.72E−03† 1.47E−01 ± 3.76E−01† 0.00E+00 ± 0.00E+00

F12 1.59E−32 ± 9.27E−34≈ 1.57E−32 ± 5.47E−48≈ 1.57E−32 ± 5.47E−48≈ 1.06E+02 ± 5.53E+02† 1.57E−32 ± 5.47E−48

F13 7.32E−04 ± 2.74E−03† 1.35E−32 ± 5.47E−48≈ 7.32E−04 ± 2.74E−03≈ 4.62E+04 ± 1.50E+05† 1.35E−32 ± 5.47E−48

w/ l/t 8/1/4 3/2/8 8/0/5 12/0/1 –

tances between Xi (i = 1, 2, . . . , N P) and Xb. Obviously,
the major difference of computational cost between basic DE
and our approach is the overhead of Eq. (10), which has to
calculate (N P − 1) number of distances at each generation.
Strictly speaking, for a specific optimization problem of D-
dimension, the computational cost of an evolutionary algo-
rithm is not only affected by its evolutionary operations, but
also by the evaluation of the objective function (Epitropakis
et al. 2011). Assume that the computational cost of an objec-
tive function evaluation be equal to c units of real computa-
tional time, while the cost of computing a distance between

two individuals be (λ · c) units of real computational time.
Take the DE/rand/1 scheme as the representative basic DE,
its computational cost per generation is CostDE = N P · c,
while that of RADE is CostR ADE = (N P −1)·λ·c+N P ·c.
We would like to point out that the value of λ is rela-
tive to the complexity of the objective function. Generally,
as the complexity increases, the ratio of the computational
cost of RADE to that of basic DE would comparatively
decrease. One can evaluate the ratio CostR ADE/CostDE

to obtain an estimate of the computational overhead of our
approach.

123

Enhancing differential evolution 2221

Table 6 The average CPU time (in seconds) of DE/rand/1 and RADE
on the test suite

Funcion D = 30 D = 50

DE/rand/1 RADE Ratio DE/rand/1 RADE Ratio

F01 0.58 0.80 1.36 1.05 1.42 1.35

F02 0.59 0.80 1.35 1.03 1.25 1.21

F03 0.69 0.93 1.36 1.45 1.89 1.30

F04 0.57 0.76 1.34 1.00 1.32 1.32

F05 0.86 1.02 1.19 1.58 1.97 1.25

F06 0.69 0.85 1.23 1.32 1.54 1.17

F07 2.41 2.60 1.08 4.87 5.05 1.04

F08 1.13 1.33 1.18 2.24 2.64 1.18

F09 0.97 1.08 1.11 1.96 2.11 1.07

F10 0.91 1.03 1.14 1.95 2.01 1.03

F11 1.08 1.26 1.17 1.99 2.31 1.16

F12 1.42 1.47 1.03 3.00 2.98 0.99

F13 1.51 1.42 0.94 3.31 3.03 0.92

F14 0.94 1.25 1.33 2.16 2.76 1.28

F15 0.93 1.26 1.36 2.09 2.81 1.34

F16 4.23 4.53 1.07 11.84 12.10 1.02

F17 0.96 1.30 1.36 2.14 3.14 1.47

F18 1.29 1.63 1.27 3.97 4.85 1.22

F19 0.92 1.24 1.35 2.18 2.71 1.24

F20 2.21 2.43 1.10 6.70 7.04 1.05

F21 2.65 3.04 1.15 7.47 8.50 1.14

F22 1.64 1.68 1.02 3.96 4.04 1.02

F23 2.36 2.77 1.17 6.74 7.74 1.15

Overall 31.53 36.49 1.16 75.98 85.21 1.12

For a quantified comparison, we employ the test suite used
in the experiments to investigate the computational runtimes
of both RADE and basic DE. Table 6 represents the CPU time
of DE/rand/1 and RADE on the test suite. Each algorithm
is run 30 times per function, and the average CPU time is
recorded. The used stopping criterion is the same as before.
The computational configurations are listed as follows.

• OS: Windows 7 (x64).
• CPU: Intel Core 2 Quad CPU Q8200 (2.33 GHz).
• RAM: 4G.
• Language: Java.
• Compiler: Eclipse SDK 4.2.0.

From Table 6, we can see that when D = 30, the range of
the ratios on different functions is [0.94, 1.36] and the over-
all ratio is 1.16. The highest ratio is on F01, while the lowest
one is on F13. It is interesting to note that the ratio on F13 is
even less than 1, which implies that the computational cost of
RADE is smaller than DE/rand/1 on this function. The possi-
ble reasons are as follows. First, the simple Sphere function

Table 7 Parameter settings for the five competitive DE variants

Algorithms Parameter settings

jDE NP = 100, τ1 = 0.1, τ2 = 0.1

SaDE NP = 50, L P = 50

ODE NP = 100, F = 0.5, C R = 0.9, Jr = 0.3

EPSDE NP = 50

MGBDE NP = 100, F = 0.5, C R = 0.9

(F01) only includes the calculation of the sum of squares,
while the Penalized function (F13) is much harder to calcu-
late, thus the computational costs of both algorithms almost
spend on the calculation of the objective function rather than
on the evolutionary operations. Second, since DE is an evolu-
tionary algorithm, the stochastic characteristic of such algo-
rithms is also capable of affecting the cost. Therefore, for
a relatively hard problem, RADE has the chance to solve it
with less time in comparison with basic DE. When D = 50,
the overall ratio is 1.12 which is less than 1.16 of D = 30,
and the ratios on most functions decrease as well, because
the complexity of a problem increases with the dimension.
Furthermore, we can conclude that the ratio on a multimodal
function is usually less than on a unimodal function, which
implies that as the complexity increases, the computational
cost of RADE would comparatively decrease.

5.3 Comparison of RADE with some state-of-the-art DE
variants

In this section, we compare RADE with five other recently
proposed DE variants, which are listed as follows.

(a) self-adapting DE (jDE) (Brest et al. 2006);
(b) self-adaptive DE (SaDE) (Qin et al. 2009);
(c) opposition-based DE (ODE) (Rahnamayan et al. 2008);
(d) DE with ensemble of parameters and mutation strategies

(EPSDE) (Mallipeddi et al. 2011);
(e) modified Gaussian bare-bone DE (MGBDE) (Wang et

al. 2013).

The control parameters for these five competitive algorithms
are set the same as in the original papers, and the parame-
ters without adaptive adjustments are listed in Table 7. For
those adaptively adjusted parameters of each competitive
algorithm (except for ODE, since all of its parameters are
fixed), they are described as follows. In jDE, the ranges of
F and CR values are [0.1, 1.0] and [0, 1], respectively. Both
F and CR are adapted based on two constants τ1 and τ2. In
SaDE, the F values are randomly sampled from a normal dis-
tribution N (0.5, 0.3), and so the available F values are almost
within [−0.4, 1.4]. Compared with F, the adaptation for CR

123

2222 X. Zhou et al.

Table 8 Comparisons of RADE
with five other DE variants for
all functions at D = 30

Function jDE
(mean)

SaDE
(mean)

ODE
(mean)

EPSDE
(mean)

MGBDE
(mean)

RADE
(mean)

F01 6.33E−40† 1.63E−87‡ 3.01E+02† 3.42E−84‡ 3.75E−50† 6.64E−76

F02 5.95E−24† 1.09E−52‡ 2.01E−01† 2.97E−39† 2.90E−30† 5.19E−43

F03 6.82E−04† 3.37E−04† 5.97E+02† 7.06E−02† 4.64E+01† 1.94E−07

F04 8.07E−01† 2.22E−07≈ 8.36E+00† 2.34E+00† 7.96E−06† 2.58E−07

F05 1.77E+01† 2.72E+01† 2.74E+04† 7.97E−01† 2.58E+01† 4.42E−11

F06 0.00E+00≈ 0.00E+00≈ 2.08E+02† 1.67E−01† 0.00E+00≈ 0.00E+00

F07 5.38E−03≈ 4.49E−03≈ 4.91E−02† 2.11E−03‡ 3.51E−03‡ 4.60E−03

F08 3.82E−04‡ 3.82E−04‡ 2.64E+03† 3.82E−04‡ 6.34E+02† 3.16E+01

F09 0.00E+00≈ 3.32E−02≈ 4.97E+01† 0.00E+00≈ 5.14E+00† 6.63E−02

F10 5.86E−15† 9.31E−02≈ 1.64E+00† 6.22E−15† 7.08E−15† 5.54E−15

F11 0.00E+00≈ 2.14E−03† 1.26E−01† 1.48E−03† 7.40E−04≈ 0.00E+00

F12 1.57E−32≈ 1.57E−32≈ 4.46E+03† 3.46E−03† 1.57E−32≈ 1.57E−32

F13 1.35E−32≈ 3.66E−04† 2.67E+03† 1.35E−32≈ 1.35E−32≈ 1.35E−32

F14 0.00E+00≈ 1.68E−30≈ 5.34E+01† 0.00E+00≈ 4.93E−14† 0.00E+00

F15 2.03E−06† 6.52E−06† 1.95E+03† 6.25E−26‡ 4.09E+00† 9.71E−11

F16 1.84E+05‡ 4.69E+05† 6.52E+06† 5.83E+05† 6.01E+06† 2.48E+05

F17 7.12E−02† 9.10E+01† 2.28E+01† 2.13E+01† 1.65E+02† 2.10E−03

F18 4.32E+02† 3.24E+03† 3.65E+03† 1.64E+03† 1.86E+03† 2.67E+02

F19 2.36E+01† 3.75E+01† 5.91E+07† 3.99E−01≈ 3.08E+01† 2.27E−14

F20 3.20E−03† 1.21E−02† 2.55E−02† 1.83E−02† 1.05E−02† 2.55E−03

F21 2.09E+01≈ 2.09E+01≈ 2.10E+01≈ 2.09E+01≈ 2.10E+01≈ 2.09E+01

F22 0.00E+00≈ 1.99E−01† 4.60E+01† 0.00E+00≈ 5.70E+00† 3.32E−02

F23 5.57E+01‡ 4.65E+01‡ 8.05E+01≈ 4.59E+01‡ 1.65E+02† 6.67E+01

w/ l/t 11/3/9 11/4/8 21/0/2 12/5/6 17/1/5 –

is more complicated. Similar to F, the CR values are also gen-
erated by a normal distribution N (C Rm, Std), where Std is
set to 0.1 while C Rm is initialized as 0.5 and then adjusted
with previous experiences. In EPSDE, two parameter pools
are defined for F and CR. The pool of F values is taken in
the range [0.4, 0.9] in steps of 0.1, and the pool of CR values
is taken in the range [0.1, 0.9] in steps of 0.1. In MGBDE, a
simple but efficient self-adaptive mechanism is proposed to
dynamically update CR for the Gaussian mutation strategy.
A normal distribution N (0.5, 0.1) is used to generate the CR
values. If an individual with the current CR value cannot gen-
erate a better candidate solution, then the CR value will be
updated by the same distribution in the next generation.

For RADE, we use the identical parameter settings as in
previous Sect. 5.2. The current experiments are respectively
conducted for D = 30 and D = 50. For D = 30, MaxFEs is
set to 200,000 for the first 13 functions; but for the remaining
ones, MaxFEs is equal to 300,000; and for D = 50, MaxFEs
is set to 250,000 for the first 13 functions; but MaxFEs is
set to 500,000 for the remaining functions. Each algorithm is
run 30 times per function, and the mean function error values
are recorded.

Tables 8 and 9 show the results at D = 30 and D = 50,
respectively. “Mean” represents the mean function error

value. From the results, it can be seen that our approach,
RADE, achieves better results than its five competitors on
the majority of test functions. To be specific, when D = 30
RADE outperforms jDE on 11 functions, but only loses on
three functions. SaDE performs better than RADE on four
functions, while RADE wins on 11 functions. ODE does not
achieve better results than RADE on any functions, while
RADE outperforms ODE on 21 functions. It is impressive
that EPSDE performs best on the function F15, and the result
is much better than other DE variants. But for other functions,
RADE achieves better results than EPSDE on 12 functions
out of them. MGBDE is only better than RADE on the func-
tion F07, while RADE wins on 17 functions. For D = 50,
we also get the similar comparison results as D = 30. Figure
5 shows the convergence curves of the five competitive DE
variants and RADE on four selected functions at D = 30.

In order to compare the performance of multiple algo-
rithms on the test suite, we conducted the Friedman test
(Garca et al. 2009, 2010). Tables 10 and 11 show the aver-
age rankings of the six DE algorithms for D = 30 and
D = 50. The best ranking is shown in boldface. As seen, the
best average ranking was obtained by the RADE algorithm,
which outperforms the other five algorithms, the performance
of the rest of algorithms can be sorted by average ranking

123

Enhancing differential evolution 2223

Table 9 Comparisons of RADE
with five other DE variants for
all functions at D = 50

Function jDE
(mean)

SaDE
(mean)

ODE
(mean)

EPSDE
(mean)

MGBDE
(mean)

RADE
(mean)

F01 5.21E−35† 2.38E−58† 6.22E+00† 9.57E−92† 1.18E−33† 1.71E−96

F02 4.33E−21† 1.40E−39† 5.80E−01† 8.31E−52† 3.31E−22† 4.91E−54

F03 4.19E+00† 1.81E+00† 2.26E+02† 2.02E+03† 5.96E+03† 1.85E−10

F04 8.60E+00† 7.45E−02† 7.29E+00† 1.07E+01† 1.78E−01† 1.95E−09

F05 4.44E+01† 7.57E+01† 5.67E+05† 7.11E+00† 5.37E+01† 1.32E−20

F06 0.00E+00≈ 0.00E+00≈ 2.91E+02† 1.30E+00† 0.00E+00≈ 0.00E+00

F07 1.00E−02† 1.74E−02† 4.67E−02† 6.47E−03† 9.74E−03† 3.58E−03

F08 6.36E−04‡ 6.36E−04‡ 2.05E+03† 6.36E−04‡ 2.06E+03† 3.95E+01

F09 0.00E+00≈ 4.31E−01† 5.31E+01† 6.63E−02≈ 2.38E+01† 9.95E−02

F10 7.99E−15† 1.15E+00† 1.98E+00† 2.93E−02† 1.30E−14† 5.30E−15

F11 0.00E+00≈ 1.54E−02† 2.94E−01† 3.77E−03† 0.00E+00≈ 4.93E−04

F12 9.42E−33‡ 2.91E−02† 1.90E+00† 4.15E−03† 6.22E−03† 1.57E−32

F13 1.35E−32≈ 1.21E−01† 3.72E+03† 1.10E−03† 1.66E−32† 1.35E−32

F14 1.68E−30‡ 5.05E−30‡ 2.44E+03† 2.40E−29‡ 5.68E−14† 4.17E−14

F15 1.24E−02≈ 8.72E−02† 8.04E+03† 1.09E+03† 1.63E+03† 3.34E−02

F16 5.54E+05‡ 9.75E+05† 1.46E+07† 9.39E+06† 1.26E+07† 7.33E+05

F17 4.65E+02≈ 5.65E+03† 1.06E+03† 7.18E+03† 1.02E+04† 4.82E+02

F18 3.38E+03† 8.32E+03† 1.12E+04† 4.53E+03† 4.42E+03† 2.38E+03

F19 3.88E+01† 9.87E+01† 5.90E+08† 1.46E+00≈ 4.66E+01† 1.33E−01

F20 4.27E−03† 8.52E−03† 3.82E+00† 9.92E−03≈ 5.00E−03† 4.11E−04

F21 2.11E+01≈ 2.11E+01≈ 2.11E+01≈ 2.11E+01≈ 2.11E+01≈ 2.11E+01

F22 0.00E+00‡ 2.35E+00† 1.09E+02† 3.32E−02‡ 2.65E+01† 6.30E−01

F23 9.61E+01‡ 1.31E+02‡ 2.17E+02≈ 1.59E+02‡ 3.55E+02† 2.03E+02

w/ l/t 10/6/7 18/3/2 21/0/2 15/4/4 20/0/3 –

(a) (b)

(c) (d)

Fig. 5 The convergence curves of the five competitive DE variants and RADE on four selected functions at D = 30

123

2224 X. Zhou et al.

Table 10 Average rankings
achieved by Friedman test at
D = 30

Algorithms Average rankings

RADE 2.20

jDE 2.67

EPSDE 2.83

SaDE 3.33

MGBDE 4.13

ODE 5.8

Table 11 Average rankings
achieved by Friedman test at
D = 50

Algorithms Average rankings

RADE 2.02

jDE 2.26

EPSDE 3.14

SaDE 3.65

MGBDE 4.15

ODE 5.50

into the following order: jDE, EPSDE, SaDE, MGBDE, and
ODE.

6 Conclusions

DE is a popular population-based optimization algorithm,
however its performance is very sensitive to the mutation
strategy and control parameters. In this paper, we developed
a RA scheme to dynamically select mutation strategies and
parameter settings for different individuals of the population.
The RA scheme utilizes both the fitness information and posi-
tional information of individuals to dynamically divide the
population into three groups. Each group is considered as a
role to exhibit different search behavior. There are three roles
in total, i.e. exploiter, follower and explorer. Each role has
its own mutation strategy and parameter setting during the
evolution. The structure of our approach, RADE, is simple
and it is easy to implement.

The experimental studies in this paper were carried out on
23 well-known benchmark problems including shifted and
rotated functions. The proposed approach RADE is com-
pared with four different DE schemes, and five recently
proposed DE variants on several scale of dimensional-
ity. The experimental results suggested that its overall
performance was better than, or at least comparable to,
its competitors. In the future, it is very interesting to
study whether the RA scheme can be used to enhance
other EAs’ performance, such as particle swarm opti-
mization (PSO) algorithm and artificial bee colony (ABC)
algorithm.

Acknowledgments This work is supported by the National Nat-
ural Science Foundation of China (No. 61070008, 61364025), the

Foundation of State Key Laboratory of Software Engineering (No.
SKLSE2012-09-19), and the Fundamental Research Funds for the Cen-
tral Universities (No. 2012211020205).

References

Abbass HA (2002) The self-adaptive pareto differential evolution algo-
rithm. In: IEEE conference on evolutionary computation, vol 1, pp
831–836

Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-
adapting control parameters in differential evolution: a comparative
study on numerical benchmark problems. IEEE Trans Evol Comput
10(6):646–657

Caponio A, Neri F, Tirronen V (2009) Super-fit control adaptation
in memetic differential evolution frameworks. Soft Comput 13(8–
9):811–831

Das S, Suganthan PN (2010) Differential evolution: a survey of the
state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

Das S, Abraham A, Konar A (2008) Automatic clustering using an
improved differential evolution algorithm. IEEE Trans Syst Man
Cybern Part A Syst Hum 38(1):218–237

Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in
evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis
MN (2011) Enhancing differential evolution utilizing proximity-
based mutation operators. IEEE Trans Evol Comput 15(1):99–119

Garca S, Molina D, Lozano M, Herrera F (2009) A study on the use
of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the cec’ 2005 special session on real
parameter optimization. J Heuristics 15(6):617–644

Garca S, Fernndez A, Luengo J, Herrera F (2010) Advanced nonpara-
metric tests for multiple comparisons in the design of experiments in
computational intelligence and data mining: experimental analysis
of power. Inf Sci 180(10):2044–2064

Ghosh A, Chowdhury A, Giri R (2010) A fitness-based adaptation
scheme for control parameters in differential evolution. In: Genetetic
and evolutionary computation conference, pp 2075–2076

Ghosh A, Das S, Chowdhury A, Giri R (2011) An improved differen-
tial evolution algorithm with fitness-based adaptation of the control
parameters. Inf Sci 181(18):3749–3765

Gong W, Cai Z (2013) Differential evolution with ranking-based
mutation operators. IEEE Trans Cybern. doi:10.1109/TCYB.2013.
2239988

Gong W, Cai Z, Ling CX (2011a) DE/BBO: a hybrid differential evo-
lution with biogeography-based optimization for global numerical
optimization. Soft Comput 15(4):645–665

Gong W, Fialho Cai Z (2011b) Adaptive strategy selection in differential
evolution for numerical optimization: an empirical study. Inf Sci
181:53645386

Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algo-
rithm. Soft Comput 9(6):448–462

Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differen-
tial evolution algorithm with ensemble of parameters and mutation
strategies. Appl Soft Comput 11(2):1679–1696

Maulik U, Saha I (2010) Automatic fuzzy clustering using modified
differential evolution for image classification. IEEE Trans Geosci
Remote Sens 48(9):3503–3510

Neri F, Tirronen V (2010) Recent advances in differential evolution: a
survey and experimental analysis. Artif Intell Rev 33(1):61–106

Noman N, Iba H (2008) Accelerating differential evolution using an
adaptive local search. IEEE Trans Evol Comput 12(1):107–125

Price K, Storn R, Lampinen J (2005) Differential evolution: a practical
approach to global optimization. Springer-Verlag, New York

123

http://dx.doi.org/10.1109/TCYB.2013.2239988
http://dx.doi.org/10.1109/TCYB.2013.2239988

Enhancing differential evolution 2225

Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algo-
rithm for numerical optimization. In: IEEE congress on evolutionary
computation, vol 2, pp 1785–1791

Qin AK,LHuang V, Suganthan PN(2009) Differential evolution algo-
rithm with strategy adaptation for global numerical optimization.
IEEE Trans Evol Comput 13(2):398–417

Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based
differential evolution. IEEE Trans Evol Comput 12(1):64–79

Ronkkonen J, Kukkonen S, Price KV (2005) Real-parameter optimiza-
tion with differential evolution. In: IEEE congress on evolutionary
computation, vol 1, pp 506–513

Salman A, Engelbrecht AP, Omran MGH (2007) Empirical analysis of
self-adaptive differential evolution. Eur J Oper Res 183(2):785–804

Shang YW, Qiu YH (2006) A note on the extended rosenbrock function.
Evol Comput 14(1):119–126

Storn R, Price K (1997) Differential evolutional simple and efficient
heuristic for global optimization over continuous spaces. J Glob
Optim 11(4):341–359

Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari
S (2005) Problem definitions and evaluation criteria for the cec 2005
special session on real-parameter optimization. In: Technical report,
Nanyang Technological University, Singapore

Sun J, Zhang Q, KTsang EP, (2005) DE/EDA: a new evolutionary algo-
rithm for global optimization. Inf Sci 169(3–4):249–262

Wang H, Wu Z, Rahnamayan S (2011a) Enhanced opposition-based
differential evolution for solving high-dimensional continuous opti-
mization problems. Soft Comput 1–14

Wang Y, Cai Z, Zhang Q (2011b) Differential evolution with composite
trial vector generation strategies and control parameters. IEEE Trans
Evol Comput 15(1):55–66

Wang Y, Cai Z, Zhang Q (2012) Enhancing the search ability of differen-
tial evolution through orthogonal crossover. Inf Sci 185(1):153–177

Wang H, Rahnamayan S, Sun H, Omran MGH (2013) Gaussian bare-
bones differential evolution. IEEE Trans Cybern 43(2):634–647

Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization
using cooperative coevolution. Inf Sci 178(15):2985–2999

Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster.
IEEE Trans Evol Comput 3(2):82–102

Zaharie D (2009) Influence of crossover on the behavior of differential
evolution algorithms. Appl Soft Comput J 9(3):1126–1138

Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution
with optional external archive. IEEE Trans Evol Comput 13(5):945–
958

123

	Enhancing differential evolution with role assignment scheme
	Abstract
	1 Introduction
	2 Classic differential evolution
	2.1 Mutation operation
	2.2 Crossover operation
	2.3 Selection operation

	3 Related works
	4 The proposed approach
	4.1 The role assignment scheme
	4.2 Selection of mutation strategies and parameter settings
	4.3 The framework of RADE

	5 Experimental verification
	5.1 Benchmark functions
	5.2 Comparison of RADE with other DE schemes
	5.2.1 Comparison of final solution's quality
	5.2.2 Scalability test
	5.2.3 Computational cost of RADE

	5.3 Comparison of RADE with some state-of-the-art DE variants

	6 Conclusions
	Acknowledgments
	References

